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Splash formation by spherical drops
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The impact of a spherical water drop onto a water surface has been studied exper-
imentally with the aid of a 35 mm drum camera giving high-resolution images that
provided qualitative and quantitative data on the phenomena. Scaling laws for the
time to reach maximum cavity sizes have been derived and provide a good fit to
the experimental results. Transitions between the regimes for coalescence-only, the
formation of a high-speed jet and bubble entrapment have been delineated. The
high-speed jet was found to occur without bubble entrapment. This was caused by
the rapid retraction of the trough formed by a capillary wave converging to the centre
of the cavity base. The converging capillary wave has a profile similar to a Crapper
wave. A plot showing the different regimes of cavity and impact drop behaviour in
the Weber–Froude number-plane has been constructed for Fr and We less than 1000.

1. Introduction
The impact of a liquid drop onto the surface of another liquid has been studied for

many years and pictures of the event make striking visual images (Worthington 1908;
Edgerton & Killian 1954). There is a wide range of phenomena associated with, and
subsequent to, drop impact resulting in an extensive literature (Engel 1967; Pumphrey
& Elmore 1990; Og̃uz & Prosperetti (1990, hereafter referred to as OP(I)); Rein 1996;
Morton, Rudman & Liow 2000). Nevertheless a map of the phenomena observed as a
function of the controlling dimensionless parameters is far from complete. The splash
associated with the impact of a liquid drop is of interest in metallurgical processes
(Liow et al. 1995; Liow & Gray 1996) as it provides a basic understanding of a wide
variety of processes that can form a splash. The processes include the injection of
solid particles into a melt, sloshing of melt during gas injection or transportation,
venting of gas injected into melts, casting of metals, and spray coating with liquid
metals. Apart from metallurgical applications, splash dynamics is important in the
erosion of soil, spreading of pathogens, impact of meteorites, impact of raindrops,
and competitive sports (Morton et al. 2000).

For liquids with low viscosities such as ethanol or water, the impact of a liquid
drop involves a number of phenomena which are primarily determined by the Weber
(We = ρu2d/σ) and Froude (Fr = u2/gd) numbers where ρ is the drop density, u its
velocity, d its diameter, σ the surface tension and g is the acceleration due to gravity.
At very low impact velocities, the impinging drop has been observed to coalesce with
the bulk liquid but may also bounce or float (Rodriguez & Mesler 1985). Cresswell
& Morton (1995) showed that during the initial stages of impact, the target liquid
rises up the impacting drop. Capillary waves are propagated up the impacting drop
as well as away from the impact site. A small cavity is formed and a wave swell
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appears at the edge of the cavity. The cavity collapses with more capillary waves
propagating outwards. As the impact velocity increases, the cavity collapses to form
a central jet with splash droplets. A vortex ring, first studied in detail by Chapman
& Critchlow (1967), is formed and travels into the bulk liquid; the depth of travel
depends on the impact velocity. Rodriguez & Mesler (1985) suggested that drops that
splash do not form vortex rings and showed that a boundary between splashing and
vortex ring formation occurred at a Reynolds number near 3000 for Froude numbers
ranging from 16 to 400. Hsiao, Lichter & Quintero (1988), using their own data
for mercury drops (Reynolds number of 20 000) and that of Rodriguez & Mesler
(1985), suggested that an upper limit to the formation of vortex rings that follows
drop impact is a Weber number of 64 and not dependent on the Reynolds number.
Cresswell & Morton (1995) argued that the boundary condition on the viscous stress
at the free surface is sufficient to account for enough vorticity to result in vortex ring
formation. As the Weber number does not include viscosity, Cresswell & Morton used
a force balance between the surface tension and pressure generated by drop impact
and obtained a value for the upper limit of the Weber number.

In a series of experiments on 2.3 mm diameter water drops, Rein (1996) found that
the transition between coalescence and splashing proceeds through a regime where a
thick central jet is formed followed by a regime where bubble entrapment coupled
with a thin high-speed jet is observed. Rein noticed that the entrapment of bubbles
did not always accompany the formation of the thin high-speed jet and concluded
that small disturbances acted to suppress bubble entrapment. Pumphrey & Elmore
(1990) showed that the bubble entrapment regime had an upper and lower boundary
on the (We,Fr )-plane. OP(I) argued that the upper limit was a balance between the
even spread of the drop over the surface of a hemispherical cavity and a surface
tension restoring force. They obtained We ∼ Fr 1/4 which fitted the experimental data
of Pumphrey & Elmore (1990). Pumphrey & Elmore (1990) observed ‘a capillary wave
which travels down the sides of the crater. When this wave reaches the bottom of the
crater, its crest closes in from all sides, thus trapping the bubble’. OP(I) argued that
‘Whether a bubble is entrapped or not is determined by a delicate balance between the
times at which the outward motion of the crater walls is reversed at different positions’.
They reasoned that the time to maximum growth of the crater scales proportionally
to drop diameter times the drop velocity to the third power, based on experimental
observation by Pumphrey (privately communicated to OP(I)). Relating this to the
time for a capillary wave formed at the bottom of the cavity to reverse its motion,
they obtain the lower limit for bubble entrapment as We ∼ Fr 1/5. Although the
relationship fitted the experimental results well, their boundary integral simulation of
the bubble entrapment for drops falling at terminal velocity indicated that the bubble
entrapment envelope was larger than that found from the experimental results (Og̃uz
& Prosperetti 1991).

The regime above the bubble entrapment regime is characterized by cavity collapse
to form a thick jet where one or two large drops are detached with a low velocity
and the sides of the cavity form a crown which breaks up to form small splash
drops (Worthington 1908; Edgerton & Killian 1954). At even higher velocities (Engel
1966), the cavity formed is hemispherical in shape and the crown that develops rises
high enough to lose its momentum so that surface tension pulls it inwards to form
a canopy over the cavity. This canopy meets at the centre and a weak jet is ejected
upwards and a stronger jet ejected downwards. The downward jet halts the rise of
the thick central jet formed from the cavity collapse. The central jet normally does
not break through the canopy.
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The condition for the start of the splashing regime has not been defined. Highly
accurate data covering the region of interest are not available because most of the
experiments used 16 mm film which has limited resolution. The present study, in
particular, attempts to provide more accurate quantitative data so that the transition
between different regimes can be characterized accurately and conflicting theories
resolved. The important parameters governing cavity dynamics are obtained from
photographic evidence enabling scaling laws to be derived for cavity growth and
collapse. The different regimes of the splashing phenomena identified are identified
on a We,Fr diagram for Fr and We less than 1000 for water drops impacting on
water.

2. Experimental
The impact behaviour was mapped by releasing water drops from different heights

into a glass tank 200 mm square and 100 mm deep, in order to vary the drop impact
velocity. The tank was filled with distilled water to the brim to reduce surface tension
effects on the tank edges. Successive runs were carried out quickly and the water was
changed between each set of runs to minimize the effects of surface impurities. A video
system was used to map the drop heights where substantial changes in drop impact
behaviour could be observed. Initially, a 16 mm Hycam was used to photograph drop
impact but it was found that the frame size (10.05×7.42 mm) and film type available
limited the details that could be seen (Morton et al. 2000).

A 35 mm drum camera was constructed with a maximum framing rate of 3 kHz
(Lawson & Liow 1998). A 1880 mm length of 35 mm film was secured around a
600 mm diameter drum to give 152 frames 1

3
the size of a standard 35 mm film frame

which provided about four times more area than a frame of the 16 mm film. Kodak
TMAX400 film with a resolution of 110 lines/mm was used and push processed
with TMAX developer to ASA1600. A 1kHz EG&G Model MVS-2613 strobe with a
maximum pulse energy of 40 mJ and a pulse duration of 5µs was used to illuminate
the object area. A 105 mm Micro Nikor lens was used at f11 to f16 to image the
drop. The strobe frequency and number of pulses were controlled through a variable
frequency generator and a Stanford Research Systems DG535 timing box (maximum
trigger delay of 85 ns). A He–Ne laser beam focused onto a photodiode was placed
in the path of the drop. When the drop traversed the laser beam, a signal was sent
to the timing box which delayed the first strobe pulse to synchronize with the drop
impact. Two 5×5 mm (±0.01 mm) squares (0.5 mm thick), one placed above and the
other below the water surface, were used to provide a scale for measurements. The
velocity and diameter of the drop before impact is accurate to ±1.5%. The accuracy
of the frequency generator is ±0.1% and measured by an oscilloscope prior to each
experiment. The length is scaled by the drop diameter, d, and time by d/u, where u is
the drop velocity.

2.1. Drop formation

In the early works on drop impact, drops were usually formed from the tip of a
burette. Drops produced from a burette, even with its tip ground flat, were found
to be asymmetrical, skewed and oscillating in all three dimensions. Video footage of
the impact showed that a large number of drops did not impact normally to the
water surface and the splash events were not repeatable. A survey of the literature
showed that the drops of Rodriguez & Mesler (1988, figure 2) exhibited considerable
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skewness. Therefore, it can be expected that most experiments using a burette for
drop formation are not easily repeatable.

To overcome the effect of the drop skewness and oscillation, smaller drops were
required and hypodermic needles with their tips ground flat were used. Wood’s metal
was solidified around the needle to provide body for grinding. A 33 gauge (0.203 mm
[±0.001 mm] external diameter) and a 16 gauge needle (1.645 mm [±0.001 mm] exter-
nal diameter) were used. The needle was attached to a travelling vernier (±0.01 mm
accuracy) and the height of fall was measured from the needle tip to the water sur-
face. All runs with spherical drops were carried out with the 33 gauge (33G) needle
because the larger needle size gave larger drops that were not spherical at impact.
Runs from the 16G needle were used only to provide a second set of data to delineate
the region of bubble entrapment. This preparation of the needles gave repeatable
results with the drop impacting normally to the water surface. To check repeatability,
the strobe was flashed once at a predetermined delay and the image captured on
video. This was repeated a number of times allowing different drops to be compared.
The repeatability of the cavity formation is within 0.2 ms, the jet formation to 0.5 ms,
the collapse of the jet back into the water bath to 2 ms.

The 35 mm photographs were digitized with a Polaroid Sprintscan at 2700 dpi
(106 dpmm) to obtain quantitative data. The drop diameter remained constant with
each needle size. Drops produced by the 33G needle were around 2.1 mm in diameter
and were spherical at impact to within 1.5% (one pixel resolution or 30 microns
when digitized) while the 16G needle gave drops that oscillated throughout the range
of fall heights used. Higher-resolution pictures of the 33G needle drops indicated
that they were spherical to 1.0%. Keeping the drop diameter constant and changing
the height of fall only changes the impact velocity, giving a constant Bond number
(Bo = We/Fr ) for a fixed drop size. The Weber and Froude numbers could be
determined to an accuracy of ±2%. The data were spaced out evenly to cover the
regime of coalescence, primary bubble entrapment and beyond as shown in figure 1.
However, the region where the crown rises and closes on itself was not reached due
to limitations on the height achievable with the travelling vernier. The minimum drop
height of 80 mm was limited by the size of the drop detector unit positioned below
the needle and the measurement scale. The density of water, measured with a density
bottle, was 998 kg m−3. The surface tension, measured by the pendant drop method,
using an FTA200 instrument by FTA Corp., was 71× 10−3 Nm−1.

From the digitized images, the drop velocity, cavity depth and cavity width were
obtained. The cavity width was measured as close as possible to the undisturbed
free surface; the vertical position is fixed for each case and within 0.5 mm of the
undisturbed free surface (the measurement squares providing the reference point). A
ratio e is defined as the cavity width divided by twice the cavity depth with a value
of 1 for a hemispherical cavity, < 1 for a prolate cavity and > 1 for an oblate cavity.

3. Cavity formation and collapse
In the formation and collapse process the cavity varies from a smooth shape at

low Fr and We to one with sharp angular corners and a highly disturbed wave
swell at high Fr and We. The wave swell is defined here as the rim of the impact
cavity that is initially intact and subsequently spreads radially outwards. A selection
of experimental data across the range collected showing the cavity formation and
collapse shapes is given in figure 2. In this section, the behaviour of the cavity as
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33G results – no jets
33G results – only jets
33G bubble entrapment
16G bubble entrapment
16G – only jets
16G – no jets
Rein’s experiment
Upper limit by Og~uz & Prosperetti
Lower limit by Og~uz & Prosperetti
Rodriguez & Mesler’s data
Upper limit of thin high-speed jet
Lower limit of thin high-speed jet
Hsiao et al.’s data
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Figure 1. Each experimental run corresponds to a point on the Weber–Froude number plane.
Two drop sizes from a 16G and 33G needle were used to traverse the high-speed jet and bubble
entrapment regimes. The experimental error bar is of the size of the symbols used and thus omitted.
Rein’s experimental runs are included for comparison. The lines Og̃uz & Properetti mark the
boundaries of the bubble entrapment regime and the dash-dotted and dotted lines are the lower
and upper limit for the thin high-speed jet formation found in this study. Rodriguez & Mesler’s
and Hsiao et al.’s data are for cases that fall on the vortex ring–splash boundary.

observed experimentally is presented and discussed beginning at the low Fr and We
and progressing to the higher values.

3.1. Coalescence regime

At low We and Fr , the drop may coalesce, float or bounce after impact. During
coalescence, it is known that a thin film of the target liquid rises up the drop faster
than the drop merges with the target fluid. As the drop continues its downward
motion a smooth capillary wave front moves outwards. The flat tops seen in figures
2(a) and 2(b) indicate that the radial wave is axisymmetric. The front of the wave
initially has a steep angle which falls rapidly as the wave front moves out.
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(a)

0 ms 1 ms 2 ms 3 ms 4 ms

5 ms 6 ms 7 ms 8 ms 9 ms

10 ms 11 ms 12 ms 13 ms1 14 ms

(b)

0 ms 2 ms 3 ms

4 ms 5 ms 6 ms

7 ms 8 ms 9 ms

10 ms 13 ms 19 ms

(c)

0 ms 3 ms 4 ms

7 ms 9 ms 10 ms

11 ms 12 ms 13 ms

14 ms 15 ms 19 ms

Figure 2(a–c). For caption see page 81.
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(e)

0 ms 1 ms 2 ms

3 ms 4 ms 5 ms

8 ms 9 ms 10 ms

11 ms 12 ms 13 ms

17 ms 18 ms 20 ms

14 ms 15 ms 16 ms

(d )

0 ms 1 ms 2 ms

4 ms 5 ms 6 ms

7 ms 8 ms 9 ms

10 ms 11 ms 12 ms

13 ms 14 ms 16 ms

Figure 2(d,e). For caption see page 81.

The cavity formed at these low Fr and We survives for only a short time. Figure
2(b) shows a sequence for Fr = 119 and We = 70. The cavity shapes at these
low values are not smooth: they are initally oblate in shape and the base grows
downwards to form a sharp point. From the sides of the cavity, a sharp corner is
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17 ms 18 ms 20 ms

( f )

0 ms 1 ms 2 ms

7 ms 8 ms 9 ms

10 ms 11 ms 12 ms

13 ms 14 ms 15 ms

16 ms 17 ms 18 ms

(g)

0 ms 1 ms 2 ms

3 ms 8 ms 9 ms

10 ms 11 ms 12 ms

13 ms 14 ms 15 ms

16 ms 17 ms 18 ms

19 ms 20 ms 23 ms

Figure 2( f,g). For caption see page 81.

seen moving downwards. At 5 ms after impact, the growth of the cavity centre slows
down (see dimensionless depth R′ at dimensionless time t′ = 3 in figure 3) and the
corner has approached the same depth as the base of the cavity. A flat cavity bottom
is seen 6–7 ms after impact. From the corner a capillary wave converges to the cavity
centreline. The capillary wave profiles become increasingly rounded with time and
the base at the cavity centre is forced downwards. The increase in R′ can be seen
at t′ = 7 in figure 3. Surface tension acts against the deformation and causes the
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(h)

0 ms 1 ms 2 ms

9 ms 10 ms 11 ms

12 ms 16 ms 17 ms

18 ms 19 ms 20 ms

21 ms 22 ms 25 ms

Figure 2. The formation and collapse of the cavity over the range of We and Fr studied.
(a) Fr = 90, We = 43, d = 1.86 mm and u = 1.29 m s−1. (b) Fr = 119, We = 70, d = 2.07 mm and
u = 1.56 m s−1. (c) Fr = 146, We = 87, d = 2.09 mm and u = 1.73 m s−1. (d) Fr = 219, We = 134,
d = 2.12 mm and u = 2.13 m s−1. (e) Fr = 301, We = 186, d = 2.13 mm and u = 2.51 m s−1.
(f) Fr = 449, We = 216, d = 1.88 mm and u = 2.88 m s−1. (g) Fr = 454, We = 283, d = 2.14 mm
and u = 3.09 m s−1. (h) Fr = 543, We = 335, d = 2.13 mm and u = 3.37 m s−1.

cavity base to rise up and arrest the inwards growth of the capillary wave. The time
between the two successive formations of a sharp point at the cavity base is around
4–5 ms and the height of the capillary wave is approximately equivalent to the drop
diameter. For a 2.1 mm diameter drop, the oscillation period of a spherical drop is√

3πρV/(n(n− 1)(n+ 2)σ). The periods corresponding to n = 2, 3 and 4 are 8.97, 4.63
and 2.99 ms respectively. The period of a capillary wave with the wavelength of the
drop diameter of 2.1 mm is 4.5 ms and is comparable to the time in the experiment
between the cavity base forming sharp points. The time to reach maximum cavity
depth is 9 ms or twice that of the capillary wave period or one oscillation period of
a spherical drop with n = 2.

Figure 3 shows the variation of the e ratio and dimensionless cavity depth (R′) with
dimensionless time for drop impacts in this regime. The growth phase of the cavity
for the first three dimensionless time units falls on the same dimensionless curve. The
cavity grows with its base moving down rapidly while its diameter at the position of
the original undisturbed interface expands more slowly. The cavity is prolate in shape
with width comparable to the depth for most of the growth phase. The prolate shape
gives the cavity base a smaller radius of curvature than it would attain if it grew
hemispherically. The rate of collapse of the cavity increases with Fr and We. The
base of the prolate shaped cavity flattens out as it collapses. This flattening happens
rapidly at the start but slows down with time due to the converging capillary wave.
The rapid initial cavity collapse gives a rapid change in the sign of the curvature at
the cavity base and has been shown by Rodriguez & Mesler (1988) and Rein (1996)
to initiate vortex ring detachment. A central jet is just barely visible. It rises less than
0.2 dimensionless lengths above the free surface of the outward travelling waves and
collapses within 8–10 ms.
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Figure 3. The e ratio, defined as the cavity width divided by twice the cavity depth, and dimensionless
cavity depth (R′) against dimensionless time (t′) for the coalescing drops. (a) Fr = 90, We = 43,
d = 1.86 mm and u = 1.29 m s−1 for the drop sequence in figure 2(a). (b) Fr = 119, We = 70,
d = 2.07 mm and u = 1.56 m s−1 for the drop sequence in figure 2(b). (c) Fr = 126, We = 75,
d = 2.09 mm and u = 1.61 m s−1.

3.2. Bubble entrapment and thin high-speed jets

Figure 2(c), for the case of Fr = 146 and We = 87, shows the formation of a thin
high-speed jet. The base of the cavity grows smoothly till about 7 ms after impact
(t′ = 6 in figure 3). During that time, a sharp corner initially at the equatorial position
of the cavity moves down along the cavity wall. After 7 ms, the sharp corner grows
inwards with an ever steepening capillary wave. Compared to figure 2(b), a much
sharper tip is formed at 12 ms after impact and this tip rebounds resulting in the
formation of a thin high-speed jet, defined as the narrow jet formed from the centre
of the cavity. It breaks into small droplets before rising above the wave swell and
becoming visible. The thin high-speed jet does not rise significantly above the top of
the wave swell.
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Bubble diameter Jet droplet diameters and velocities
We Fr (mm) (m s−1)

81 133 0.17 (4.8), 0.17 (2.2), 0.19 (1.2)
87 146 0.08 0.11 (10.5), 0.09 (5.0), 0.14 (3.8), 0.11 (3.40)

0.07 (2.8), 0.11 (2.6), 0.20 (1.3), 0.23 (0.9)
92 152 0.10 (5.6), 0.09 (3.9), 0.10 (2.7), 0.12 (2.2)

0.27 (0.8), 0.54 (0.1)
97 160 0.31 0.11 (4.3), 0.08 (3.0), 0.12 (2.4), 0.54 (0.3)

104 174 0.54 0.10 (4.9), 0.09 (4.9), 0.13 (3.0), 0.24 (1.1)
0.42 (0.4)

107 178 0.62 0.13 (2.8), 0.26 (1.4), 0.26 (0.8)
134 219 0.78 0.14 (7.4), 0.14 (4.8), 0.14 (3.6), 0.2 (2.5)

0.13 (2.3), 0.3 (1.1)
161 186 0.79 0.15 (4.6), 0.18 (2.1), 0.24 (1.2)
186 301 0.76, 0.34 0.13 (5.0), 0.13 (3.3), 0.34 (1.7)
209 341 0.86, 0.26 0.32 (2.2)
234 379 0.31 (3.0), 0.24 (2.5), 1.70 (0.0)
216 449 0.13 (4.3), 0.17 (3.5), 0.31 (0.8)

Table 1. Entrapped bubble diameters, droplet diameters and velocities (shown in brackets) for the
high-speed Rayleigh jet regime measured from photographs. The velocity is measured from the first
two frames where the droplet first appears. The diameter and velocities are those of the splash
drops that form from the jet break-up and relate to a single experiment, not several measurements.

Table 1 lists the jet droplet diameters and initial velocities measured. The velocities
of the droplets that break off from the high-speed jet attain up to 10.5 (±0.03) m s−1.
Rein (1996) showed that the lower limit in the (We,Fr )-plane (figure 1) for the
formation of a thin high-speed jet coincides with the formation of an entrained
bubble. In this set of experiments, the start of the high-speed jet occurs in a region
significantly below the theoretical curve of OP(I) and in the region where Rein claims
that only coalescence occurs with a thick jet forming. Figure 3 of Rein’s (1996) paper
shows a thick jet rising much higher than seen in the current photographs of the
coalescence regime: the thick jet of Rein’s figure 3 is similar to the jet seen 19 ms
after impact in figure 2(c). Similar results for the lower limit were obtained for the
16G needle drops (see figure 1). The transition from the coalescence-only regime to
the thin high-speed jet regime is quite sudden, much more so than suggested by Rein
(1996).

Once the bubble entrapment regime was reached, bubble entrapment occurred over
a fairly large range of We and Fr as seen in figures 2(c), 2(d) and 2(e) and table 1. The
digitized film had a resolution of 30 µm allowing drops and bubbles to be detected
down to 30 µm, but only drops and bubbles larger than 60µm can be measured
reliably. The pictures also showed that sharp tips were formed at the cavity base
in the jetting regime below and above the bubble entrapment regime. The entrained
bubble diameter rises rapidly from 0.1 mm as the We and Fr values increase to a
constant diameter of around 0.6 to 0.8 mm for most of the conditions in the bubble
entrapment regime. In the regime for the 16G needle drops, bubble entrapment was
dependent on the shape of the drop at impact. Prolate drops did not entrap bubbles.
Oblate drops and drops with shapes intermediate between prolate and oblate resulted
in bubble entrapment. The drop shape parameter was not investigated in detail as
the 16G results were only used to delineate the lower and upper limits of the bubble
entrapment regime.
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To ascertain whether smaller entrapped bubbles were missed in the thin high-speed
jet regime, the apparatus was re-assembled and a series of runs carried out with a
variation of 2 mm in the drop height for the 33G needle. This resulted in Fr being
varied by 2 and We by 1 between different runs. The runs were repeated, but not
consecutively, up to three times at selected heights and this showed that the results
were repeatable even with such a small variation in drop height. In this second
run, the resolution was taken down to 10µm and confirmed that no bubbles were
entrapped even though the thin high-speed jet was consistently observed.

However, it was found that within the region where only thin high-speed jets
formed, there were certain values of We and Fr that did not produce a jet (unfilled
diamonds in figure 1). Instead, a thicker jet similar to Rein’s figure 3 was observed.
This was confirmed with repeated runs. Image analysis showed that the drop was
at its maximum oblate shape at impact. The dimensionless number window for this
to occur was approximately 1 for We and 2 for Fr . However, above Fr = 140, the
shape of the drop did not matter and thin high-speed jets were obtained until the
bubble entrapment regime was reached. The region where bubble entrapment began
was studied with video equipped with a close-up lens that resolved up to 10µm. The
entrapped bubble sizes captured from a large number of observation varied from
100 to 250 µm, the size increase occurring over a change in Fr of about 10. Smaller
entrapped bubble sizes were not observed.

3.2.1. An explanation for the thin high-speed jets

It is well established that bubble entrapment results in the formation of a high-
pressure stagnation point where the cavity closes. This high pressure results in
the formation of a high-speed jet. Table 1 shows that the appearance of bubble
entrapment is fairly abrupt with a finite bubble size produced. This experimental
observation is consistent with Pumphrey & Elmore’s (1990) and OP(I) observation
that the entrapped bubble has a narrow size range over a wide range of impact
velocities.

An explanation for this high-speed jet can be based on an earlier description
by Longuet-Higgins (1990) in relation to sound production by raindrops. After
impact, the cavity is stretched in the equatorial direction. A sharp corner arises where
the cavity and wave swell meet. It was noted in the experiments that when the
sharp corner was observed, it always appeared after the wave swell had reached its
maximum amplitude. The movement of this sharp corner tracks a capillary wave as
it propagates downwards to the polar end or base of the cavity. While the capillary
wave is propagating, the cavity base stops growing and the cavity starts collapsing.
During cavity collapse, the capillary wave is being focused into the cavity base. As the
capillary wave is focused, it grows in aspect ratio and becomes steeper. The steepening
causes the cavity base to grow downwards again to form a sharp point. The sharp
point retracts and when the retraction is rapid enough, a high-speed jet is formed.
With increasing impact speeds, the point is sharper, resulting in a faster retraction
and hence a faster thin high-speed jet. This is in agreement with the experiments
where the splash drop velocities are higher for Fr = 146 and We = 87 than for
Fr = 133 and We = 81. When the impact speed increases, the cavity takes longer to
begin collapsing. This allows the capillary wave to progress to a steeper wave and it
meets and entraps a bubble before the sharp point can retract.

The nonlinear effects of progressive capillary waves have been studied (Crapper
1957; Longuet-Higgins 1988) and the wave crests show a rounding effect similar
to that seen in figures 2(b) and 2(c). Although the capillary wave in this case is
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Figure 4. Pixel outline of the cavity at the last frame before collapse compared to the Crapper
wave profile. (a) Fr = 121, We = 68.7, d = 2.04 mm, and u = 1.56 m s−1. a/λ = 0.4 for the Crapper
wave. The Crapper wave was shifted 0.25 mm to the right to match the cavity shape. (b) Fr = 123,
We = 69.7, d = 2.04 mm, and u = 1.57 m s−1. a/λ = 0.5 for the Crapper wave.

axisymmetric and converging towards the centre, a rough comparison of the wave
profile can be made with the shapes given by Crapper (1957). Figure 4 shows the
comparison for two cases, just before and just after the start of the high-speed jet
regime. It is found possible to match the curves for different a/λ values (a is the wave
amplitude and λ is the wavelength as defined by Crapper) to the experimental cavity
shapes. The a/λ values increase on going from no jet to a high-speed thin jet. The fit
has been obtained by assuming that a = 2 mm, which is about the size of the drop
diameter. Since the Crapper wave encloses a bubble in its trough when a/λ = 0.73,
bubble entrapment will begin with a bubble of finite size. Taking a = 2 mm, the
entrapped bubble diameter is around 0.1 mm which is consistent with experimental
observations. With bubble entrapment, the capillary wave collapses with a substantial
protrusion that meets to entrap the bubble. The shape is not rounded, so no fits were
possible with any value of the Crapper wave.

The speed of this converging wave was obtained by measuring the speed of the
converging front at the flat base of the cavity (e.g. frames at 5–8 ms in figure 2b).
Values of 0.43 to 0.5 m s−1 were obtained. This is approximately within the range
of capillary wave speed for a wavelength about equal to the drop diameter. It was
found that the velocity of the capillary wave increased by up to 20% while it was
converging towards the cavity centerline but there were not enough image frames to
get an accurate estimate of velocity variations. This indicated that the wavelength
was decreasing while it converged. This is consistent with the fits for figure 4 that
required a to be kept constant while a/λ was increased.

The experimental results suggest that once the capillary wave passes a given a/λ
value, it is possible for the wave trough to retract rapidly and form a high-speed jet
when the capillary forces in the trough can overcome the force of the wave converging
to form the trough. An approximate value of 0.5 is obtained from the experimental
results. In many physical situations, a critical vertex angle of 109.5◦ exists where
a high-speed jet is formed (Longuet-Higgins 1990). Its applicability to this case is
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Figure 5. The e ratio and dimensionless cavity depth (R′) against dimensionless time (t′) for the
high-speed jet regime. (d) Fr = 174, We = 104, d = 2.10 mm and u = 1.89 m s−1. (e) Fr = 219,
We = 134, d = 2.12 mm and u = 2.13 m s−1 for the drop sequence in figure 2(d). (f) Fr = 301,
We = 186, d = 2.13 mm and u = 2.51 m s−1 for the drop sequence in figure 2(e). (g) Fr = 379,
We = 234, d = 2.13 mm and u = 2.81 m s−1. (h) Fr = 449, We = 216, d = 1.88 mm and u = 2.88 m s−1

for the drop sequence in figure 2(f).

slightly different as a gas cavity retracts and forms a high-speed jet. For the Crapper
wave, when a/λ > 0.31 there is a slope forming a vertex angle of 109.5◦ or less. In
§ 3.2.3, the cavity was found not to reach the critical angle when only a high-speed
jet occurred. However, the images obtained suggest that the sharp tip steepens quite
independently of the rest of the cavity. Another possibility for the condition for the
high-speed jet to form could be when there is a vertical slope of the Crapper wave
profile (i.e. a/λ > 0.64), but a more accurate resolution of the exact value of a/λ is
not possible with the experimental setup as the final stages occur too rapidly.

As the capillary wave speed is proportional to the square root of the surface tension,
a decrease in the surface tension by a surfactant will result in a slower capillary wave
and hence a shift to a higher We. This may result in a move out of the jet formation
and bubble entrapment regime. This effect is observed in figure 23 of Pumphrey &
Elmore (1990).
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3.2.2. Cavity dynamics

In the bubble entrapment regime, the cavity is initially oblate in shape. Figure
5 shows that a plot of the dimensionless cavity depth versus dimensionless time
collapses to a single line at the early stages of cavity formation. The cavity grows
continuously in a U-shape (figure 2c–f). Just before collapse the sides near the base
contract sharply to form a V-shaped cavity.

As the cavity expands the wave swell amplitude stops increasing and continues
travelling outwards. As noted earlier, this coincides with the appearance of the sharp
corner which starts travelling down the cavity. The experimental setup does not
provide clear evidence of whether this sharp corner is a direct result of the collapse
of the wave swell. The moving sharp corner causes a steepening of the sides of the
cavity. Initially, the moving sharp corner retards the outward growth of the cavity
while the downward growth is unaffected. The decrease in the e ratio with time is
halted and it approaches a constant value as the cavity continues to grow. The cavity
stops growing downwards and reverses direction when the sharp corner is part of the
way down the cavity wall (t′ = 8–12 for curve (e), t′ = 11–16 for curve (f) in figure
5). But this reverse motion is arrested by the sharp corner forming a steep capillary
wave that converges towards the base of the cavity, which expands again (t′ = 13–14
for curve (e), t′ = 17–19 for curve (f) in figure 5) as the capillary wave steepens. While
the cavity base is expanding for the second time, other parts of the cavity above the
base continue collapsing. The capillary wave meets at a point just above the cavity
base leading to bubble pinch off. The bubble formed is accelerated downwards. The
photographs show that the motion of the sharp corner causes the cavity sides to
collapse at different times. This explanation is consistent with the findings of Morton
et al. (2000). OP(I) noted that their pictures showed that the sidewalls move in with
a velocity that increases with depth. In contrast, superposing the cavity outlines from
successive time frames (figure 2c, d) shows that the moving sharp corner increases the
cavity width and the collapse of the sidewalls near the cavity base starts some time
after the cavity base has started retracting.

The sharp corner that travels down the cavity forms sharper edges as We and Fr
increase. This leads to the cavity taking a polygonal shape initially with seven or
eight faces which reduces to an inverted triangle just before bubble entrapment. The
high-speed jet regimes without bubble entrapment are marked by the presence of
a sharp tip just before jet formation (12 ms in figure 2(c) and 16 ms in figure 2(f))
indicating that the capillary wave is not steep enough to entrap a bubble.

3.2.3. Cone angle

In an analytic model of sound production by raindrops based on potential flow
theory, Longuet-Higgins (1990) presented a criterion for the production of a bubble
from an exact solution for conical flow. The time dependence was found to develop a
singularity at the instant when the vertex angle of the conical boundary passes through
the critical angle of 109.5◦ and a bubble will be entrained. Direct measurement of
the cone angle at the base of the cavity prior to the formation of the high-speed jet
to confirm the critical angle of 109.5◦ was not possible as the cone angle varied too
rapidly to be fully captured by the drum camera. Longuet-Higgins also showed that
the time dependence of the cone angle (2γ) is given by

tan γ ≈ √2(1− 3
2
τ2/3), (3.1)
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Figure 6. Variation of the cone angle departure from its limiting value with dimensionless time for
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where τ is linearly related to the dimensionless time. The departure of the cone angle
from its limiting value is

∆γ = arctan
√

2− γ. (3.2)

Plotting (2∆γ)3/2 against dimensionless time should give a straight line if the results
satisfy equation (3.1) and provide an indirect test of the theory. Longuet-Higgins
has only shown that this scaling applies for the numerical simulations of OP(I).
Measurement of the experimental cone angle is difficult as the cavity surface is
not smooth and a well defined cone allowing precise measurements is generally not
observed. Nevertheless, figure 6 shows that equation (3.1) is satisfied for the cases
where bubble entrapment occurs. The extrapolation of the line gives an approximate
dimensionless time for the appearance of the high-speed jet. For the cases where there
is no bubble entrapment, the line curves away as the critical angle is approached.
It can be concluded that the simple analytical model of Longuet-Higgins holds for
bubble entrapment. For the case of Fr = 126 and We = 75, a thin high-speed jet
is formed but the line curves away as the critical angle is approached. The vertex
angle of the capillary wave trough varied too quickly to provide adequate points for
verifying whether the trough itself satisfied this critical angle criterion. However, the
vertex cone angle of the sharp point measured between 35◦ and 40◦ for the frame
just before the jet forms. In the coalescence regime, the cone decreased to about 50◦
before expanding again during collapse.
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3.3. The upper limit to bubble entrapment

The upper limit for bubble entrapment is close to OP(I)’s theoretical curve. However,
the formation of the high-speed jet persist to higher Fr and We, resulting in a larger
regime for high-speed jet formation. Figure 2(f) shows that the capillary wave meets
to form a sharp point at the cavity base (16 ms). Photographs of a number of sharp
points showed that the points were not axisymmetric, in contrast to those formed in
the lower regime of the high-speed jets. A second set of more closely spaced runs
was carried out and the formation of the high-speed jet for the 33G needle drops
was found to persist till around Fr = 425–446 and We = 244–251 which is above the
upper limit of OP(I)’s theoretical curves for bubble entrapment. The results for the
16G needle drops exhibit similar behaviour. The results shows that the regime for
bubble entrapment is a subset of the high-speed jet regime. In the bubble entrapment
regime, there are at least six to ten drops of varying sizes ejected from the jet with
the first drop appearing above the wave swell before the jet appears. The velocities of
the first few small drops are always greater than the impacting drop velocity. Once
the high-speed jet regime boundary is crossed, the jet breaks up with two or fewer
large drops after the jet has grown significantly above the wave swell. These larger
splash drops have velocities less than that of the impacting drop velocity.

3.4. Formation of the crown

The wave swell was earlier defined as the rim of the impact cavity that is initially
intact and subsequently spreads radially outwards. The crown is defined here as the
portion of the rim that breaks up ejecting small splash droplets.

The smooth wave front that moves up the impacting drop faster than the drop
moves into the target liquid was found to separate from the drop while it was still
entering the bulk liquid. The wave formed an annular spray, which can also be seen
more clearly in a downwards view on page 42 of Worthington’s (1908) book. The
appearance of the annular spray coincides with the upper limit for bubble entrapment.
Figure 7 shows the behaviour for three different Fr and We covering below, at, and
above the transition for spray formation. Figure 7(b) shows the annular spray forming
which ejects fine drops horizontally but does not form a fully developed crown until
at a later time. In figure 7(c) a fully formed crown is shown with larger splash drops
ejected at an angle about 45◦ to the horizontal. The time taken from the formation
of the spray to the breakup of the largest drop from the crown is about 0.5 ms. This
is extremely rapid and is only partially captured by the camera. The photographs
show that spray formation marks the start of crown breakup. As Fr and We increase,
the crown breakup becomes more and more distinct until a distinct annular crown is
formed as in figure 7(c).

It is possible to piece the event together from different drop experiments. On
impact, a smooth wave front of the target fluid moves up the impacting drop. When
the smooth wave front is able to overcome the surface tension forces holding it to
the drop surface, a spray is formed and breaks up before the drop has completely
entered the bulk liquid. The drop continues to spread on the surface of the cavity,
while the rest of the wave front that has not broken up in a spray then thickens to
form the wave swell at the rim of the cavity. Numerical simulations by Morton et
al. (2000) show that the drop fluid for this thick jet regime spreads evenly over the
surface of the cavity and continues to be propagated out radially with the wave swell.
At higher Fr and We, there is more energy than can be dissipated by the spray and a
crown develops that ejects larger drops. After the larger drops have been ejected, the
wave swell that remains continues to propagate outwards. When a crown is formed,
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Figure 7. Three consecutive frames separated by 1 ms for three different conditions showing the
phenomena associated with the transition to crown formation: (a) Fr = 301, We = 186, d = 2.13 mm
and u = 2.51 m s−1; (b) Fr = 490, We = 296, d = 2.11 mm and u = 3.18 m s−1 – a spray can be seen
and fine drops indicating a small crown; (c) Fr = 639, We = 395, d = 2.13 mm and u = 3.65 m s−1 –
a spray is visible and the crown is well formed (The dark outline to the right in the last photograph
is the outline of the thin stem joining the marker plates and does not affect the experiment.)

the cavity rim is disturbed with numerous capillary waves being visible on its surface.
These waves do not dissipate as quickly as in the previous cases with lower Fr and We
for the bubble entrapment regime where they dissipate before cavity collapse occurs.
The waves dissipate quite late during the cavity collapse stage and their influence on
the cavity collapse is discussed in the next section.

3.5. Thick jet regime

The cavity behaviour in the thick jet regime is shown in figure 2g, h. The transition
from the high-speed jet to the thick jet occurs within a We range of 5 and Fr range
of 20.

There are a number of differences in cavity behaviour between this thick jet regime
and the high-speed jet regime. First, the drop forms a spray during impact. Second,
an unstable rim is formed which subsequently results in a crown. Experimentally,
the appearance of the spray and crown coincides with the disappearance of the
thin high-speed jet. Third, the surface of the wave swell is much more disturbed
with numerous small surface waves being present in the cavity which take longer
to damp out after drop impact (at 17 ms (dimensionless time of 25) for Fr = 454
and We = 283 compared with at 8 ms (dimensionless time of 12) for Fr = 449 and
We = 216). Fourth, the wave front travelling down the cavity appears much later and
the intermediate polygonal shapes are more pronounced. The vertices of the polygon
can be seen travelling downwards. Photograph of the cavity surface in Worthington
(1908) show that the cavity surface is covered with many capillary waves. Fifth, the
base of the cavity during collapse is not flat but is covered with smaller capillary
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Figure 8. Formation of a secondary bubble for the case Fr = 639, We = 395, d = 2.13 mm and
u = 3.65 m s−1. Note the wavy surface of the cavity base in contrast to the smooth cavity base for
the cases in the bubble entrapment regime. Consecutive frames are separated by 1 ms.

We Fr Splash drop diameter Velocity of splash drop Angle Jet height
(mm) (m s−1) (deg.) (mm)

251 445 0.93, 1.39 1.36, 0.43 33, 73 3.96, 6.93
283 454 1.52 0.71 31 5.99
296 490 1.91 0.51 34 7.11
323 519 2.05 0.45 34 7.77
335 543 2.31 0.30 31 8.63
344 577 2.30 0.38 32 8.76
394 639 2.31 0.39 32 9.75
351 711 2.21 0.41 32 7.89

Table 2. Size and velocity of splash drop pinched off in the thick jet regime, angle subtended by the
jet at the point just below the detaching splash drop and height reached by the jet when breakup
occurs.

waves which give rise to the secondary entrapment of bubbles. Figure 8 shows an
entrained bubble formed for the Fr = 639 and We = 395 case.

Sixth, a thick jet is formed with splash drops pinching off that are comparable in
size to the impacting drop. Near the transition from the thin high-speed jet to the
thick jet regime, the jet initially breaks up to form two splash drops but rapidly settles
down with increasing Fr and We to give only one large splash drop comparable in
diameter to the impacting drop. The splash drop sizes and velocities are given in table
2. The velocity of the splash drop measured between two successive frames just after
detachment shows that the splash drop velocity falls as Fr increases. The height of
the jet measured in the frame prior to the detachment of the splash drop, in general,
increases with Fr . However, at higher Fr , the crown closes back on itself forming
a barrier to the thick jet (Engel 1966) and limits the height that the thick jet can
reach. The angle subtended by the thick jet just below the first detaching splash drop
measured prior to detachment is fairly consistent and between 31◦ and 34◦.

The cavity formed is more hemispherical than in the regimes discussed so far,
as shown in figure 9 but the assumption that the expansion of the cavity is fully
hemispherical in the thick jet regime was not confirmed experimentally. Figure 9
shows that for cases (g) and (h) in this regime, the e ratio over most of the cavity
lifetime is about 0.75. Figures 2(g) and 2(h) show that the inward travelling wave
appears later and the expanding tip of the cavity base has reversed its motion and
contracted long before the wave reaches it. The upward rising cavity base meets the
inward travelling wave and thereafter the flat cavity bottom with numerous capillary
waves appears. Figure 9 shows that the cavity depth remains unchanged for ten or
more dimensionless times, after which the cavity base collapses to form a thick jet.
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Figure 9. The e ratio and dimensionless cavity depth (R′) for the thick jet regime. (h) Fr = 449,
We = 216, d = 1.88 mm and u = 2.88 m s−1 for the drop sequence in figure 2(f). (j) Fr = 543,
We = 335, d = 2.13 mm and u = 3.37 m s−1 for the drop sequence in figure 2(h). (k) Fr = 600,
We = 368, d = 2.12 mm and u = 3.53 m s−1.

3.6. Maximum cavity depth

Following Pumphrey & Elmore (1990) and relating the drop kinetic energy to the
potential energy of the mass displaced for a hemispherical cavity gives

R′m =

(
Fr

3ρ′

)1/4

(3.3)

where R′m = Rmax/d, Rmax is the maximum cavity depth, d is the drop diameter, ρ′ is the
density ratio ρtarget/ρimpactor or ρt/ρi. In figure 10 R′m against Fr is plotted for a large
number of water drop experiments, both from the literature and from the current
set of experiments. As Pumphrey & Elmore’s (1990) paper only reported the value
of d3/4u1/2, it is not possible to include their results. The theoretical line overpredicts
the maximum cavity diameter because the energy of the surfaces formed and the
wave swell has not been taken into account and increases with increasing Fr . In
dimensional units, plotting Rmax against d3/4u1/2, we find that Pumphrey & Elmore’s
(1990) cavity sizes are significantly larger than in this study or any other published
results except that of Cai (1989a). However, a fuller description of Cai’s (1989b)
experimental procedure places serious doubts on the accuracy of those results as the
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target liquid in the trough was moving with a constant velocity and the dropper was
driven continuously by a motor to different heights simultaneously. In Pumphrey &
Elmore’s (1990) case, a third of the results were on or above the theoretical line, which
indicated that the cavity’s potential energy was either equal to or larger than that
supplied by the drop kinetic energy, and this occurred for higher values of d3/4u1/2

where impacting drop surface tension energy is small compared to the impacting
drop kinetic energy. Figure 10 does show that the Fr 1/4 scaling applies to the data
presented and a least-squares fit gives

R′m = 0.727

(
Fr

3ρ′

)1/4

. (3.4)

Equation (3.4) shows that only 28% of the impacting drop kinetic energy is converted
to the cavity potential energy. At low Froude numbers, the effect of surface tension
becomes important as the maximum cavity size diminishes rapidly with decreasing
Froude number. A correction to equation (3.3) has been given by Prosperetti & Og̃uz
(1993). Since equation 3.3 assumes a hemispherical cavity shape which is strictly
valid for high-momentum drops, the data of Fink, Gault & Greeley (1984) for
hypervelocity impacts of solid spheres in water and silicon oil were used to find the
range of validity of equation (3.3) (see figure 10). The hypervelocity data also show
the same (Fr/ρ′)1/4 dependence given by equation (3.3) but the points are shifted to
the right. Since the formation of a crown and loss of material occur while the cavity
is forming for high Fr , it is expected that there would be a smaller R′m for a given
Fr . Nevertheless, equation (3.4) is near the low-viscosity results of Fink et al. (1984)
indicating the scaling is valid to high Fr . The high-viscosity results show significantly
smaller maximum cavity sizes over the same Fr range.

3.7. Time to reach maximum cavity depth

The scaling for the growth of the cavity with time can be estimated from a balance
between the kinetic energy of the fluid and the drop kinetic energy based on an
approach similar to Engel (1967) but assuming that the drop impact represents a
source. The potential of the fluid around the cavity be then be approximated by

φ =
A

r
. (3.5)

The radial velocity is

vr = −∂φ
∂r

=
A

r2
, (3.6)

and the tangential velocity is 0. The resultant velocity, q = (v2
r + v2

θ)
1/2 is then given

by A/r2. At the cavity wall, where r = R, the resultant velocity is equal to dR/dt, that
is

dR

dt
=

A

R2
. (3.7)

Solving for A gives

φ =
R2

r

dR

dt
. (3.8)

The kinetic energy in the target liquid below the original surface of the liquid for the
cavity at a position of R and resultant velocity of dR/dt is given by

Ek = −(ρ/2)

∫∫
φ
∂φ

∂r
dS, (3.9)
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Figure 10. Variation of the dimensionless maximum cavity depth with the Froude number for data
from this study and the literature. The dotted line is the theoretical prediction, and the solid line
is the least-squares fit for water–water impacts. The hypervelocity data of Fink et al. (1984) for
solid spheres into liquids is included. The density differences between the solid projectiles and liquid
target have been taken into account in the Fr/ρ′ term. The low-viscosity data are for water and
silicon oil of viscosities of 200 and 2850 cP. The high-viscosity data are for silicon oil of viscosities
of 25 600 and 60 000 cP.

where S is a surface element. Substituting for φ and ∂φ/∂r gives

Ek = −ρ
2

∫∫
R4

r3

(
dR

dt

)2

dS,

= πρR3

(
dR

dt

)2 ∫ π/2

0

sin θdθ,

= πρR3

(
dR

dt

)2

. (3.10)

If Fr is large, then the kinetic energy of the mean flow driven by the expanding
cavity does not change substantially during the early stages of cavity formation. For
a constant kinetic energy, equation (3.10) gives the result that t ∝ R5/2 (a referee
kindly pointed out that this had been derived earlier by Birkhoff (1954) in relation
to collapsing spherical cavities who also showed that the expansion phase is stable
but the collapse phase is unstable). A plot of the dimensionless cavity depth against
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Figure 11. Variation of the cavity depth with time for water drops impacting onto water. Engel’s
(1967) data are for Fr = 6950, We = 19360, d = 4.55 mm and u = 17.61 m s−1 at 3644 frames per
second with the least-squares-fit solid line of t′ = 1.14R

′5/2; Morton et al. (2000) is for Fr = 220,
We = 248, d = 2.90 mm and u = 2.50 m s−1 at 2500 frames per second with the least-squares-fit
dashed line of t′ = 1.80R

′5/2; the 16G and 33G from this study are for a fall height of 800 mm with
Fr = 387, We = 756, d = 3.77 mm and u = 3.78 m s−1 and Fr = 600, We = 368, d = 2.12 mm and
u = 3.53 m s−1 respectively.

dimensionless time is shown in figure 11 with data taken from Engel (1967), Morton
et al. (2000) and two of the highest-momentum drops in this work. There is good
agreement of the scaling with the data of Engel and Morton et al. during the growth
period. The agreement is poorer during the early and late times of cavity formation.
In the early stages, Cresswell & Morton (1995) have shown that vorticity is generated
by drop impact and part of the energy of the impacting drop would have been lost
during the vorticity generation process. After the early stage, the present analysis gives
a good representation of the expanding cavity behaviour. The smallest drop studied
generated by the 33G needle shows greater deviation with a curved line during the
growth while the 16G needle drop has a central portion where it followed the R

′5/2

scaling. This is expected as the effect of surface tension was ignored, hence large drops
with high impact momentum would follow the R

′5/2 scaling better than small drops.
This is substantiated by the results of Engel where the momentum was substantially
higher than achieved in this study. Photographs in Engel (1967) show that the cavity,
formed by drops with a momentum much higher than achieveable in this study, are
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hemispherical. At late times, with the collapse phase being unstable, the scaling does
not hold.

To obtain a scaling for the maximum cavity depth, the total energy available for
the cavity growth process is assumed to be supplied by the kinetic energy of the drop
(πρid

3u2/12). It is assumed that the cavity formed is hemispherical, which holds for
high-momentum impacts and, hence, large Fr and We values. The surface tension
energy is small compared to the kinetic energy of the drop, as represented by the
inverse of We, and can be neglected. The potential energy of the cavity formed is
given by πρtgR

4/4. The energy balance gives

πR4ρtg

4
+ πρtR

3

(
dR

dt

)2

=
πρiu

2d3

12
. (3.11)

Rearranging equation (3.11), non-dimensionalizing the result, and integrating with
respect to time gives∫ R′m

0

(12ρ′)1/2

(
R′3

1− 3R′4ρ′/Fr

)1/2

dR′ =

∫ t′m

0

dt′. (3.12)

Since Fr is large, the denominator is ≈ 1 and integrating gives t′m = (2/5)
√

12ρ′R
′5/2
m =

1.39ρ
′1/2R

′5/2
m . Earlier, only 28% of the drop energy was found to be involved in the

cavity formation. Using this fraction for the drop energy gives t′m = 2.62ρ
′1/2R

′5/2
m .

Figure 12 shows dimensionless maximum cavity depth versus dimensionless time
to reach maximum cavity depth for data obtained from the literature and this study.
Engel (1966) provides data for large drops that are close to terminal velocity and
Macklin & Metaxas’s (1967) data include ethanol and glycerol drops impacting on
the same target fluid. The 33G needle drops show much more deviation as the
cavity depths often exhibited two maximums and the first maximum was chosen.
This resulted in smaller times as the cavities were generally prolate in shape rather
than hemispherical as assumed by the theoretical development. As the derivation is
expected to fit the high-momentum impacts best, the data of Engel (1964) and Macklin
& Metaxas (1976) were initially fitted with a power law curve giving t′m = 2.5R

′2.45
m with

r2 = 0.98. A least-squares fit to all the data for a power law curve gives t′m = 1.42R
′2.84
m

with r2 = 0.97. This indicates that for the lower momentum impacts less energy is lost
during the formation of the cavity. As the deviation from the theoretical exponent is
not too large, the complete set of data was refitted with the theoretical exponent to
give t′m = 2.31R

′2.5
m . The validity of the scaling was tested with a hypervelocity result of

Gault reported by Holsapple & Schmidt (1987) for a Perspex sphere impacting onto
a water target at 2500 m s−1 as shown in figure 12. The maximum cavity depth scaling

with time obtained theoretically is able to cover the low to hypervelocity range (R
′5/2
m

from 0.5 to 104).

3.8. The wave swell

At low We and Fr (figure 2a, b), the wave swell is a capillary wave that expands
outwards with time. Although not clear in figure 2, capillary waves can be seen
propagating outwards ahead of the wave swell in figure 13. The steepness of the
outward wave front decreases with time. The appearance of the steep wave front
coincides with the appearance of the inward capillary wave travelling down the cavity
wall (at 5 and 6 ms in figure 2d). When crown formation occurs, the appearance
of the inward capillary wave is delayed and the outward travelling wave front has



Splash formation by spherical water drops 97

105

104

103

102

101

100

R ′5/2

t ′

100

Macklin & Metaxas (1967)
Engel (1967)
H2O – 16 mm film
33G needle
Gault
t′ = 2.31 R′5/2

101 102 103 104 105

Figure 12. Variation of the dimensionless time required to reach dimensionless maximum cavity
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smaller drops at low velocities give rise to cavity depths that do not increase monotonically with time
and the time to the first maximum was chosen. Macklin & Metaxas’s (1976) data include ethanol
and glycerol runs. Engel (1964) used larger drops where the cavity depth expanded smoothly to the
maximum cavity depth. The maximum experimental error is t′ = ±1 for the experiments in this
study.

Figure 13. A top view of the early stages of cavity formation. Capillary waves can be seen
propagating outwards ahead of the wave swell which has not yet collapsed.
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We Fr Average velocity Average velocity
of outward wave of inward wave

(m s−1) (m s−1)

6.9 9.5 0.44 —
43 90 0.38 —
75 126 0.43 0.51

107 178 0.40 0.46
162 263 0.38 0.45
209 341 0.38 0.41
216 449 0.36 0.46
368 639 0.32 0.54

Table 3. Average velocities of the outward and inward travelling waves for the 33G needle drops.
Inward travelling waves velocities are not measurable for low Fr and We.

already begun dissipating before the inward travelling wave can be seen on the cavity
walls (figure 2g). The waves formed would be expected to consist of waves in a
finite bandwidth (Longuet-Higgins 1990) and the long time behaviour of the impact
area shows a clear region expanding outwards as the capillary waves have a finite
minimum velocity (Crapper 1984). Linear plots obtained for the distance travelled
by the outward and inward travelling waves against time indicated that the waves
are travelling with a constant velocity. The measured velocities are given in table 3.
The velocity of a capillary wave is given by (2πσ/λρ)1/2. The velocity measured is
higher than the minimum capillary wave velocity of 0.23 m s−1. It is assumed that
the capillary wave would be initially be a disturbance, and hence have a wavelength
equal to the drop diameter. As pointed out in § 3.2.1, the inward travelling wave is a
Crapper type wave with an amplitude of the order of the drop diameter.

The velocities of the outward travelling wave do not vary substantially for increasing
We except for a small fall for We above 100. Crapper (1984) showed that the group
velocity of a capillary wave is 3/2 times the phase velocity. The average velocity for the
outward travelling waves is 0.38 m s−1 which is about 10% higher than the minimum
group velocity of 0.345 m s−1. The outward travelling wave is initially propagating
at close to the minimum group velocity for purely capillary waves before dispersion
becomes significant. Measurements of the velocities of the outward travelling wave
for the 16G drops over a number of different We between 70 to 300 also gave an
average outward travelling wave velocity of 0.35 m s−1.

3.9. Upper limit to the high-speed jet regime

OP(I) argued that the upper limit to the bubble entrapment regime occurs when the
cavity grows radially when the drop material spreads evenly on the cavity surface.
Morton et al. (2000) have confirmed numerically in the thick jet regime that the drop
material does spread evenly on the cavity surface even though the cavity may not be
growing hemispherically. The experiments show that the formation of the spray and
crown marked the upper limit of the high-speed jet regime where the forces spreading
the drop radially out overcome the surface tension forces. If so, We ≈ Fr 1/4 should
hold. Fitting the line to the experimental values in figure 1 gives We = 54Fr 1/4.

3.10. Lower boundary for high-speed jet formation

The experimental results show that the lower boundary for bubble entrapment is
below the least-squares line of OP(I), which is We = 41.3Fr 0.179. Using the points
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Figure 14. Variation of the dimensionless cavity width (measured as close as possible to the original
undisturbed free surface position) reached at maximum cavity depth with dimensionless time to
reach maximum cavity depth. The first six point are for low We and Fr in the regime of coalescence.
The line of best fit is w′ = 1 + 0.175t′m. The other cases show a departure from the line as the cavity
width takes longer to expand with time.

available for the 16G and 33G needle, the curve

We = 36.2Fr 0.186 (3.13)

is obtained. The lower boundary for the formation of a high-speed jet lies below the
lower boundary for bubble entrapment. Using the points available for the 16G and
33G needle, the curve

We = 34.7Fr 0.145 (3.14)

is obtained as shown in figure 1. The Fr exponent is probably low since the experi-
mental set-up limited the lowest Fr and We values attainable for the 16G runs.

Figure 14 shows the dimensionless cavity width reached at maximum cavity depth
(w′) against the dimensionless time to reach maximum cavity depth (t′m). For the
results in the bubble entrapment and thick jet regime, the cavity width (measured
as close as possible to the original undisturbed free surface position) expands and
contracts with the passage of the inward travelling waves at that point. The first six
points in figure 14, for the results in the coalescing regime, fit a straight line passing
though the drop diameter at impact time; thus w′ varies linearly with t′m. The variation
of w′ with t′m can therefore be used as another parameter to detect the transition from
the regime of coalescence to bubble entrapment.

The results for the splash–vortex ring boundary given by Rodriguez & Mesler
(1985) with the mercury data of Hsiao et al. (1988) were shown in figure 1. A number
of observations can be made. First, the data for the splash–vortex ring boundary
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coincide with the lower boundary for high-speed jet formation found in this study.
Second, the results of Rodriguez & Mesler (1985) show an Fr dependence on We.
This was not mentioned by Hsiao et al. (1988) and may have been overlooked since
their definitions of Fr and We are the square root of the definitions used in this study
which resulted in their plots being compressed. Third, the results suggest that there
may not be a unique We value separating the splash–vortex ring boundary but rather
the formation of the high-speed jet may disrupt the shedding of the large vortex ring
seen by dyed drops. Instead, what was found previously was the lower boundary for
high-speed jet formation. The value of

√
We = 8 to separate the splash–vortex ring

boundary given by Hsiao et al. (1988) can be seen to be an averaged value for the
data they had available.

4. Other observations
In some of the experiments, the drop detached from the Rayleigh jet did not rise

far above the target liquid before falling back. This produced a wide range of small
and large drops with low velocities which were captured on the film. The splash
produced by these secondary drops covered much lower Fr and We values not easily
generated experimentally. The positions of the drops on the (We,Fr )-plane are shown
in figure 17 in § 5. These secondary drops may either bounce, coalesce with severe
surface distortion, float on the target liquid surface, or exhibit a combination of these
effects.

4.1. Floating and bouncing drops

Drops floating on the target liquid surface occurs only for Fr less than 7 and are
clustered around the line We = Fr . Floating drops are rare and there is a dearth of
data because the conditions for their formation occur in a small regime in the (We,Fr )-
plane which is difficult to produce merely by dripping water from a nozzle. There are
more data on bouncing drops in the literature. Bouncing drops are scattered over a
wider range of Fr with Fr > We. The experimental data available suggest that for
bouncing drops, We does not exceed 8 and the drops are smaller than 600 microns in
diameter. Results for bouncing drops given by Rodriguez & Mesler (1985) and Ching,
Golay & Johnson (1984) are included in figure 17. The boundary between floating
and coalescing drops at present cannot be delineated based on experimental data. As
the Fr increases, the drops coalesce with the target fluid without floating or bouncing.
The data for the coalescing drops suggest that a similar line of the form We = aFr
can be used to separate the bouncing drop regime from the coalescing drop regime.
A least-squares fit to the coalescing drops found in this study gives We = 0.038Fr .
The regimes are delineated in figure 17. Two data points for coalescence with the
formation of a cavity occur along the We = Fr line when We is higher than 7. When
compared with figure 1, the results indicate that drops having We larger than 8 would
coalesce with cavity formation.

4.2. Coalescence of floating drops

Figure 15 shows the sequence in the coalescence of a large drop formed from a
Rayleigh jet that has returned to the target liquid (Fr = 6.6, We = 2.6). The drop is
highly distorted as it is still oscillating strongly due to the forces exerted during the
breakup process. The drop impacts onto the crater still present in the target liquid.
On impact, the drop flattens out and a sharp cusp is formed at its apex. Further
flattening results in the cusp being smoothed out and the drop takes a flat tablet
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Figure 15. Coalescence of a floating drop with Fr = 6.6, We = 2.6, d = 1.72 mm and u = 0.33 m s−1.
The time in milliseconds is referenced to 0 ms for the frame just before drop impact for the first
impacting drop at the start of the experiment.

shape. The tablet shape rebounds back to a spherical shape due to surface tension
and oscillates slightly while resting on the surface. The drop floats on the target liquid
surface for about 60 ms before coalescence takes place. During coalescence, a wave
is created at the rim where coalescence occurs and the wave travels up the drop. In
contrast, the target liquid surface is relatively undisturbed. MacKay & Mason (1963)
showed experimentally that if the ratio of the diameters of two coalescing drops is
greater than 12, the surface of the larger drop is undisturbed and can be treated as a
flat surface. This criterion is applicable here. The propagating wave causes the drop
to elongate into a stretched cylindrical column shape before a small drop of 0.76 mm
diameter is ejected. This sequence is similar to the coalescence of water drops in
silicone oil–CCl4 solution shown in figure 11 of MacKay & Mason’s (1963) paper.
While the process took 25 ms in MacKay & Mason’s experiment due to the higher
viscosities of the liquids used, the process here takes only 4 ms. The pinched off drop
is highly distorted and moves back towards the source of liquid. The drop does not
coalesce but bounces off the target liquid. This is similar to observations by Zhang
& Basaran (1995) for drops forming at a nozzle which they suggested were due to
the unbalanced surface tension force on the thread during breakup. The thickness of
the jet in the frame before breakup is 180 microns. For nozzles of similar diameter,
Zhang & Basaran (1995) found that the satellite drops formed in their experiments
moved towards the nozzle and then bounced off.

4.3. Formation of small drops at the apex

The formation of a small drop at the apex of an impacting drop was mentioned by
Peck & Sigurdson (1994) for a drop of Fr = 25 − 28 and We = 22 − 25. Results
to delineate the conditions for their formation are unavailable. Figure 16 shows the
processes involved in the formation of an apex drop for the impact of a 2.3 mm
drop at 0.47 m s−1 with Fr = 9.5 and We = 6.9. The apex drop does not pinch off.
During impact, capillary waves are formed on the surface of the drop. These capillary
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Figure 16. The formation of the apex drop for Fr = 9.5, We = 6.9, d = 2.31 mm and
u = 0.46 m s−1. In this case, the apex drop does not detach from the main drop.

waves are not seen in the photographs for drops at high Fr and We; the impacting
drop surface is smooth. The surface waves propagate up towards the apex of the
impacting drop and almost pinch off a small drop when about three quarters of
the impacting drop has penetrated the target liquid. The impacting drop takes on a
layered appearance with the formation of surface waves. A cavity is formed by the
impacting drop. Despite the large range of results in this study, sighting of these apex
drops is rare. However, when the condition for formation is suitable, the formation is
repeatable. This was confirmed with a large number of drop impacts videotaped with
a strobe at 300 flashes/s. It is also noted that the apex drops are not projected as
splash drops above the free surface before the cavity has collapsed. Since the cavity
does not form a jet, it is inferred that the apex drops adhere to the surface of the
cavity and are ejected when the cavity collapses. Only one apex drop was observed
to be formed.

5. Summary and conclusions
The impact of a spherical water drop onto a water target has been studied to

provide qualitative and quantitative data. It is now possible to construct a much
clearer picture of the variation of splash behaviour on the (We,Fr )-plane as given
in figure 17. It shows for the first time that the primary bubble entrapment regime
is a subset of the regime occupied by the high-speed jet. For water drops falling
by gravity in air, the terminal velocity curve provides an envelope within which all
the phenomena are found. The terminal velocity is calculated from the correlations
given by Dingle & Lee (1972). Nevertheless, this picture is still not complete as much
more data are required to fill in the surrounding regions. However, the important
characteristics have been identified and the regions where they appear have been
delineated.

For low We below 10, as the Fr increases, the phenomena observed begin with the
impacting drop floating on the target liquid surface before coalescing later. As Fr
is increased, the impacting drop bounces off the surface once or more times before
coalescing. At even higher values of Fr and We up to the terminal velocity the
impacting drops coalesce on impact with the target fluid.
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Figure 17. The We,Fr plot showing the different regimes. The approximate regimes for floating,
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coalescing regimes is still not well defined. The data are: CGJ, Ching et al. (1984), J & M, Jayaratne
& Mason (1964), R & M. Rodriguez & Mesler (1985). The normal velocity component is used for
drops impacting at an angle.

For We greater than 10, the impacting liquid drop phenomena studied hitherto
including this study, are confined to a regime where We/Fr < 5 and within the
terminal velocity line. As We is increased from 10, the impacting drop initially
coalesces and vortex rings are propagated into the target liquid. In this coalescence
regime, a capillary wave was found to move down the cavity sides and then converge
towards the centre of the cavity with increasing aspect ratio. This capillary wave slows
down the collapse of the cavity.

As We is increased, the capillary wave becomes steeper prior to the collapse of the
cavity. This capillary wave is similar in profile to the Crapper wave. The trough at
the centre becomes more pointed and it retracts to form a thin high-speed jet. The
lower limit for the formation of the thin high-speed jet determined from experimental
results is We = 34.7Fr 0.145. The lower limit for the formation of the thin high-speed
jet was found to coincide with the splash–vortex ring boundary given by Rodriguez &
Mesler (1965). It is postulated therefore that the lower limit for the formation of the
high-speed jet and the splash–vortex ring boundary are identical. As We is increased
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further, the capillary wave becomes steep enough so that it entraps a bubble. Primary
bubble entrapment occurs with the formation of a thin high-speed jet and the lower
limit for primary bubble entrapment was determined as We = 36.2Fr 0.186. In the
lower high-speed jet regime, the shape of the drop at impact can influence the cavity
dynamics. Oblate impacting drops are less likely to result in a thin high-speed jet
being formed for the 33G needle drops.

In the primary bubble entrapment regime, when the capillary wave moves down
the sides of the cavity towards the base, the cavity wall moves inwards and then
outwards relative to its centreline when the wave passes through. This is in contrast
to the assumption that the cavity only expands and contracts once during its lifetime.
The upper limit to the primary bubble entrapment regime was found to be close
to the value of We = 48.3Fr 0.247 determined from experiments by OP(I). The thin
high-speed jet was found to disappear at a slightly higher We and the upper limit
to the high-speed jet regime was determined experimentally as We = 54Fr 0.25. The
primary bubble entrapment regime was found to be a subset of the high-speed jet
formation regime. It was also found that the upper limit for the high-speed jet
formation coincides with the formation of a spray at the early stages of drop impact
and the beginning of crown formation at the rim of the cavity.

Above the high-speed jet regime, the cavity forms a flat base before collapse and
a thick jet is formed. The flat base of the cavity is irregular in shape and secondary
bubble entrapment may occur from dimples in the cavity base. Larger drops were
found to have the shape factor as an added parameter affecting the behaviour of
splash formation in the high-speed jet and bubble entrapment regimes of the We,Fr
plot. Although interesting it was not investigated as part of this study.

The equation for maximum cavity depth, (3.4) was found to be applicable to
viscous liquids up to a viscosity of 3000 cP. How this is related to the drop impact
Reynolds number is not known and will require further studies with viscous liquids.
Equation (3.4) also indicates that only a quarter of the impacting drop kinetic energy
is converted to the potential energy of the cavity. During the period of cavity growth
where the kinetic energy of the liquid is large compared to the potential energy of
the cavity, the dimensionless time for cavity growth scales according to R

′5/2. The
dimensionless time to reach maximum dimensionless cavity depth R′m was found

to scale according to R
′5/2
m and is valid over ten magnitudes of Fr . The wave swell

travelling outwards was found to be travelling at close to the minimum group velocity
for capillary waves.
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